You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2077 lines
80 KiB

  1. # Copyright 2014-2016 OpenMarket Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import datetime
  15. import itertools
  16. import logging
  17. from queue import Empty, PriorityQueue
  18. from typing import (
  19. TYPE_CHECKING,
  20. Collection,
  21. Dict,
  22. Iterable,
  23. List,
  24. Optional,
  25. Sequence,
  26. Set,
  27. Tuple,
  28. cast,
  29. )
  30. import attr
  31. from prometheus_client import Counter, Gauge
  32. from synapse.api.constants import MAX_DEPTH, EventTypes
  33. from synapse.api.errors import StoreError
  34. from synapse.api.room_versions import EventFormatVersions, RoomVersion
  35. from synapse.events import EventBase, make_event_from_dict
  36. from synapse.logging.opentracing import tag_args, trace
  37. from synapse.metrics.background_process_metrics import wrap_as_background_process
  38. from synapse.storage._base import SQLBaseStore, db_to_json, make_in_list_sql_clause
  39. from synapse.storage.database import (
  40. DatabasePool,
  41. LoggingDatabaseConnection,
  42. LoggingTransaction,
  43. )
  44. from synapse.storage.databases.main.events_worker import EventsWorkerStore
  45. from synapse.storage.databases.main.signatures import SignatureWorkerStore
  46. from synapse.storage.engines import PostgresEngine, Sqlite3Engine
  47. from synapse.types import JsonDict
  48. from synapse.util import json_encoder
  49. from synapse.util.caches.descriptors import cached
  50. from synapse.util.caches.lrucache import LruCache
  51. from synapse.util.cancellation import cancellable
  52. from synapse.util.iterutils import batch_iter
  53. if TYPE_CHECKING:
  54. from synapse.server import HomeServer
  55. oldest_pdu_in_federation_staging = Gauge(
  56. "synapse_federation_server_oldest_inbound_pdu_in_staging",
  57. "The age in seconds since we received the oldest pdu in the federation staging area",
  58. )
  59. number_pdus_in_federation_queue = Gauge(
  60. "synapse_federation_server_number_inbound_pdu_in_staging",
  61. "The total number of events in the inbound federation staging",
  62. )
  63. pdus_pruned_from_federation_queue = Counter(
  64. "synapse_federation_server_number_inbound_pdu_pruned",
  65. "The number of events in the inbound federation staging that have been "
  66. "pruned due to the queue getting too long",
  67. )
  68. logger = logging.getLogger(__name__)
  69. # Parameters controlling exponential backoff between backfill failures.
  70. # After the first failure to backfill, we wait 2 hours before trying again. If the
  71. # second attempt fails, we wait 4 hours before trying again. If the third attempt fails,
  72. # we wait 8 hours before trying again, ... and so on.
  73. #
  74. # Each successive backoff period is twice as long as the last. However we cap this
  75. # period at a maximum of 2^8 = 256 hours: a little over 10 days. (This is the smallest
  76. # power of 2 which yields a maximum backoff period of at least 7 days---which was the
  77. # original maximum backoff period.) Even when we hit this cap, we will continue to
  78. # make backfill attempts once every 10 days.
  79. BACKFILL_EVENT_EXPONENTIAL_BACKOFF_MAXIMUM_DOUBLING_STEPS = 8
  80. BACKFILL_EVENT_EXPONENTIAL_BACKOFF_STEP_MILLISECONDS = int(
  81. datetime.timedelta(hours=1).total_seconds() * 1000
  82. )
  83. # We need a cap on the power of 2 or else the backoff period
  84. # 2^N * (milliseconds per hour)
  85. # will overflow when calcuated within the database. We ensure overflow does not occur
  86. # by checking that the largest backoff period fits in a 32-bit signed integer.
  87. _LONGEST_BACKOFF_PERIOD_MILLISECONDS = (
  88. 2**BACKFILL_EVENT_EXPONENTIAL_BACKOFF_MAXIMUM_DOUBLING_STEPS
  89. ) * BACKFILL_EVENT_EXPONENTIAL_BACKOFF_STEP_MILLISECONDS
  90. assert 0 < _LONGEST_BACKOFF_PERIOD_MILLISECONDS <= ((2**31) - 1)
  91. # All the info we need while iterating the DAG while backfilling
  92. @attr.s(frozen=True, slots=True, auto_attribs=True)
  93. class BackfillQueueNavigationItem:
  94. depth: int
  95. stream_ordering: int
  96. event_id: str
  97. type: str
  98. class _NoChainCoverIndex(Exception):
  99. def __init__(self, room_id: str):
  100. super().__init__("Unexpectedly no chain cover for events in %s" % (room_id,))
  101. class EventFederationWorkerStore(SignatureWorkerStore, EventsWorkerStore, SQLBaseStore):
  102. def __init__(
  103. self,
  104. database: DatabasePool,
  105. db_conn: LoggingDatabaseConnection,
  106. hs: "HomeServer",
  107. ):
  108. super().__init__(database, db_conn, hs)
  109. self.hs = hs
  110. if hs.config.worker.run_background_tasks:
  111. hs.get_clock().looping_call(
  112. self._delete_old_forward_extrem_cache, 60 * 60 * 1000
  113. )
  114. # Cache of event ID to list of auth event IDs and their depths.
  115. self._event_auth_cache: LruCache[str, List[Tuple[str, int]]] = LruCache(
  116. 500000, "_event_auth_cache", size_callback=len
  117. )
  118. self._clock.looping_call(self._get_stats_for_federation_staging, 30 * 1000)
  119. async def get_auth_chain(
  120. self, room_id: str, event_ids: Collection[str], include_given: bool = False
  121. ) -> List[EventBase]:
  122. """Get auth events for given event_ids. The events *must* be state events.
  123. Args:
  124. room_id: The room the event is in.
  125. event_ids: state events
  126. include_given: include the given events in result
  127. Returns:
  128. list of events
  129. """
  130. event_ids = await self.get_auth_chain_ids(
  131. room_id, event_ids, include_given=include_given
  132. )
  133. return await self.get_events_as_list(event_ids)
  134. @trace
  135. @tag_args
  136. async def get_auth_chain_ids(
  137. self,
  138. room_id: str,
  139. event_ids: Collection[str],
  140. include_given: bool = False,
  141. ) -> Set[str]:
  142. """Get auth events for given event_ids. The events *must* be state events.
  143. Args:
  144. room_id: The room the event is in.
  145. event_ids: state events
  146. include_given: include the given events in result
  147. Returns:
  148. set of event_ids
  149. """
  150. # Check if we have indexed the room so we can use the chain cover
  151. # algorithm.
  152. room = await self.get_room(room_id) # type: ignore[attr-defined]
  153. if room["has_auth_chain_index"]:
  154. try:
  155. return await self.db_pool.runInteraction(
  156. "get_auth_chain_ids_chains",
  157. self._get_auth_chain_ids_using_cover_index_txn,
  158. room_id,
  159. event_ids,
  160. include_given,
  161. )
  162. except _NoChainCoverIndex:
  163. # For whatever reason we don't actually have a chain cover index
  164. # for the events in question, so we fall back to the old method.
  165. pass
  166. return await self.db_pool.runInteraction(
  167. "get_auth_chain_ids",
  168. self._get_auth_chain_ids_txn,
  169. event_ids,
  170. include_given,
  171. )
  172. def _get_auth_chain_ids_using_cover_index_txn(
  173. self,
  174. txn: LoggingTransaction,
  175. room_id: str,
  176. event_ids: Collection[str],
  177. include_given: bool,
  178. ) -> Set[str]:
  179. """Calculates the auth chain IDs using the chain index."""
  180. # First we look up the chain ID/sequence numbers for the given events.
  181. initial_events = set(event_ids)
  182. # All the events that we've found that are reachable from the events.
  183. seen_events: Set[str] = set()
  184. # A map from chain ID to max sequence number of the given events.
  185. event_chains: Dict[int, int] = {}
  186. sql = """
  187. SELECT event_id, chain_id, sequence_number
  188. FROM event_auth_chains
  189. WHERE %s
  190. """
  191. for batch in batch_iter(initial_events, 1000):
  192. clause, args = make_in_list_sql_clause(
  193. txn.database_engine, "event_id", batch
  194. )
  195. txn.execute(sql % (clause,), args)
  196. for event_id, chain_id, sequence_number in txn:
  197. seen_events.add(event_id)
  198. event_chains[chain_id] = max(
  199. sequence_number, event_chains.get(chain_id, 0)
  200. )
  201. # Check that we actually have a chain ID for all the events.
  202. events_missing_chain_info = initial_events.difference(seen_events)
  203. if events_missing_chain_info:
  204. # This can happen due to e.g. downgrade/upgrade of the server. We
  205. # raise an exception and fall back to the previous algorithm.
  206. logger.info(
  207. "Unexpectedly found that events don't have chain IDs in room %s: %s",
  208. room_id,
  209. events_missing_chain_info,
  210. )
  211. raise _NoChainCoverIndex(room_id)
  212. # Now we look up all links for the chains we have, adding chains that
  213. # are reachable from any event.
  214. sql = """
  215. SELECT
  216. origin_chain_id, origin_sequence_number,
  217. target_chain_id, target_sequence_number
  218. FROM event_auth_chain_links
  219. WHERE %s
  220. """
  221. # A map from chain ID to max sequence number *reachable* from any event ID.
  222. chains: Dict[int, int] = {}
  223. # Add all linked chains reachable from initial set of chains.
  224. for batch2 in batch_iter(event_chains, 1000):
  225. clause, args = make_in_list_sql_clause(
  226. txn.database_engine, "origin_chain_id", batch2
  227. )
  228. txn.execute(sql % (clause,), args)
  229. for (
  230. origin_chain_id,
  231. origin_sequence_number,
  232. target_chain_id,
  233. target_sequence_number,
  234. ) in txn:
  235. # chains are only reachable if the origin sequence number of
  236. # the link is less than the max sequence number in the
  237. # origin chain.
  238. if origin_sequence_number <= event_chains.get(origin_chain_id, 0):
  239. chains[target_chain_id] = max(
  240. target_sequence_number,
  241. chains.get(target_chain_id, 0),
  242. )
  243. # Add the initial set of chains, excluding the sequence corresponding to
  244. # initial event.
  245. for chain_id, seq_no in event_chains.items():
  246. chains[chain_id] = max(seq_no - 1, chains.get(chain_id, 0))
  247. # Now for each chain we figure out the maximum sequence number reachable
  248. # from *any* event ID. Events with a sequence less than that are in the
  249. # auth chain.
  250. if include_given:
  251. results = initial_events
  252. else:
  253. results = set()
  254. if isinstance(self.database_engine, PostgresEngine):
  255. # We can use `execute_values` to efficiently fetch the gaps when
  256. # using postgres.
  257. sql = """
  258. SELECT event_id
  259. FROM event_auth_chains AS c, (VALUES ?) AS l(chain_id, max_seq)
  260. WHERE
  261. c.chain_id = l.chain_id
  262. AND sequence_number <= max_seq
  263. """
  264. rows = txn.execute_values(sql, chains.items())
  265. results.update(r for r, in rows)
  266. else:
  267. # For SQLite we just fall back to doing a noddy for loop.
  268. sql = """
  269. SELECT event_id FROM event_auth_chains
  270. WHERE chain_id = ? AND sequence_number <= ?
  271. """
  272. for chain_id, max_no in chains.items():
  273. txn.execute(sql, (chain_id, max_no))
  274. results.update(r for r, in txn)
  275. return results
  276. def _get_auth_chain_ids_txn(
  277. self, txn: LoggingTransaction, event_ids: Collection[str], include_given: bool
  278. ) -> Set[str]:
  279. """Calculates the auth chain IDs.
  280. This is used when we don't have a cover index for the room.
  281. """
  282. if include_given:
  283. results = set(event_ids)
  284. else:
  285. results = set()
  286. # We pull out the depth simply so that we can populate the
  287. # `_event_auth_cache` cache.
  288. base_sql = """
  289. SELECT a.event_id, auth_id, depth
  290. FROM event_auth AS a
  291. INNER JOIN events AS e ON (e.event_id = a.auth_id)
  292. WHERE
  293. """
  294. front = set(event_ids)
  295. while front:
  296. new_front: Set[str] = set()
  297. for chunk in batch_iter(front, 100):
  298. # Pull the auth events either from the cache or DB.
  299. to_fetch: List[str] = [] # Event IDs to fetch from DB
  300. for event_id in chunk:
  301. res = self._event_auth_cache.get(event_id)
  302. if res is None:
  303. to_fetch.append(event_id)
  304. else:
  305. new_front.update(auth_id for auth_id, depth in res)
  306. if to_fetch:
  307. clause, args = make_in_list_sql_clause(
  308. txn.database_engine, "a.event_id", to_fetch
  309. )
  310. txn.execute(base_sql + clause, args)
  311. # Note we need to batch up the results by event ID before
  312. # adding to the cache.
  313. to_cache: Dict[str, List[Tuple[str, int]]] = {}
  314. for event_id, auth_event_id, auth_event_depth in txn:
  315. to_cache.setdefault(event_id, []).append(
  316. (auth_event_id, auth_event_depth)
  317. )
  318. new_front.add(auth_event_id)
  319. for event_id, auth_events in to_cache.items():
  320. self._event_auth_cache.set(event_id, auth_events)
  321. new_front -= results
  322. front = new_front
  323. results.update(front)
  324. return results
  325. async def get_auth_chain_difference(
  326. self, room_id: str, state_sets: List[Set[str]]
  327. ) -> Set[str]:
  328. """Given sets of state events figure out the auth chain difference (as
  329. per state res v2 algorithm).
  330. This equivalent to fetching the full auth chain for each set of state
  331. and returning the events that don't appear in each and every auth
  332. chain.
  333. Returns:
  334. The set of the difference in auth chains.
  335. """
  336. # Check if we have indexed the room so we can use the chain cover
  337. # algorithm.
  338. room = await self.get_room(room_id) # type: ignore[attr-defined]
  339. if room["has_auth_chain_index"]:
  340. try:
  341. return await self.db_pool.runInteraction(
  342. "get_auth_chain_difference_chains",
  343. self._get_auth_chain_difference_using_cover_index_txn,
  344. room_id,
  345. state_sets,
  346. )
  347. except _NoChainCoverIndex:
  348. # For whatever reason we don't actually have a chain cover index
  349. # for the events in question, so we fall back to the old method.
  350. pass
  351. return await self.db_pool.runInteraction(
  352. "get_auth_chain_difference",
  353. self._get_auth_chain_difference_txn,
  354. state_sets,
  355. )
  356. def _get_auth_chain_difference_using_cover_index_txn(
  357. self, txn: LoggingTransaction, room_id: str, state_sets: List[Set[str]]
  358. ) -> Set[str]:
  359. """Calculates the auth chain difference using the chain index.
  360. See docs/auth_chain_difference_algorithm.md for details
  361. """
  362. # First we look up the chain ID/sequence numbers for all the events, and
  363. # work out the chain/sequence numbers reachable from each state set.
  364. initial_events = set(state_sets[0]).union(*state_sets[1:])
  365. # Map from event_id -> (chain ID, seq no)
  366. chain_info: Dict[str, Tuple[int, int]] = {}
  367. # Map from chain ID -> seq no -> event Id
  368. chain_to_event: Dict[int, Dict[int, str]] = {}
  369. # All the chains that we've found that are reachable from the state
  370. # sets.
  371. seen_chains: Set[int] = set()
  372. sql = """
  373. SELECT event_id, chain_id, sequence_number
  374. FROM event_auth_chains
  375. WHERE %s
  376. """
  377. for batch in batch_iter(initial_events, 1000):
  378. clause, args = make_in_list_sql_clause(
  379. txn.database_engine, "event_id", batch
  380. )
  381. txn.execute(sql % (clause,), args)
  382. for event_id, chain_id, sequence_number in txn:
  383. chain_info[event_id] = (chain_id, sequence_number)
  384. seen_chains.add(chain_id)
  385. chain_to_event.setdefault(chain_id, {})[sequence_number] = event_id
  386. # Check that we actually have a chain ID for all the events.
  387. events_missing_chain_info = initial_events.difference(chain_info)
  388. if events_missing_chain_info:
  389. # This can happen due to e.g. downgrade/upgrade of the server. We
  390. # raise an exception and fall back to the previous algorithm.
  391. logger.info(
  392. "Unexpectedly found that events don't have chain IDs in room %s: %s",
  393. room_id,
  394. events_missing_chain_info,
  395. )
  396. raise _NoChainCoverIndex(room_id)
  397. # Corresponds to `state_sets`, except as a map from chain ID to max
  398. # sequence number reachable from the state set.
  399. set_to_chain: List[Dict[int, int]] = []
  400. for state_set in state_sets:
  401. chains: Dict[int, int] = {}
  402. set_to_chain.append(chains)
  403. for event_id in state_set:
  404. chain_id, seq_no = chain_info[event_id]
  405. chains[chain_id] = max(seq_no, chains.get(chain_id, 0))
  406. # Now we look up all links for the chains we have, adding chains to
  407. # set_to_chain that are reachable from each set.
  408. sql = """
  409. SELECT
  410. origin_chain_id, origin_sequence_number,
  411. target_chain_id, target_sequence_number
  412. FROM event_auth_chain_links
  413. WHERE %s
  414. """
  415. # (We need to take a copy of `seen_chains` as we want to mutate it in
  416. # the loop)
  417. for batch2 in batch_iter(set(seen_chains), 1000):
  418. clause, args = make_in_list_sql_clause(
  419. txn.database_engine, "origin_chain_id", batch2
  420. )
  421. txn.execute(sql % (clause,), args)
  422. for (
  423. origin_chain_id,
  424. origin_sequence_number,
  425. target_chain_id,
  426. target_sequence_number,
  427. ) in txn:
  428. for chains in set_to_chain:
  429. # chains are only reachable if the origin sequence number of
  430. # the link is less than the max sequence number in the
  431. # origin chain.
  432. if origin_sequence_number <= chains.get(origin_chain_id, 0):
  433. chains[target_chain_id] = max(
  434. target_sequence_number,
  435. chains.get(target_chain_id, 0),
  436. )
  437. seen_chains.add(target_chain_id)
  438. # Now for each chain we figure out the maximum sequence number reachable
  439. # from *any* state set and the minimum sequence number reachable from
  440. # *all* state sets. Events in that range are in the auth chain
  441. # difference.
  442. result = set()
  443. # Mapping from chain ID to the range of sequence numbers that should be
  444. # pulled from the database.
  445. chain_to_gap: Dict[int, Tuple[int, int]] = {}
  446. for chain_id in seen_chains:
  447. min_seq_no = min(chains.get(chain_id, 0) for chains in set_to_chain)
  448. max_seq_no = max(chains.get(chain_id, 0) for chains in set_to_chain)
  449. if min_seq_no < max_seq_no:
  450. # We have a non empty gap, try and fill it from the events that
  451. # we have, otherwise add them to the list of gaps to pull out
  452. # from the DB.
  453. for seq_no in range(min_seq_no + 1, max_seq_no + 1):
  454. event_id = chain_to_event.get(chain_id, {}).get(seq_no)
  455. if event_id:
  456. result.add(event_id)
  457. else:
  458. chain_to_gap[chain_id] = (min_seq_no, max_seq_no)
  459. break
  460. if not chain_to_gap:
  461. # If there are no gaps to fetch, we're done!
  462. return result
  463. if isinstance(self.database_engine, PostgresEngine):
  464. # We can use `execute_values` to efficiently fetch the gaps when
  465. # using postgres.
  466. sql = """
  467. SELECT event_id
  468. FROM event_auth_chains AS c, (VALUES ?) AS l(chain_id, min_seq, max_seq)
  469. WHERE
  470. c.chain_id = l.chain_id
  471. AND min_seq < sequence_number AND sequence_number <= max_seq
  472. """
  473. args = [
  474. (chain_id, min_no, max_no)
  475. for chain_id, (min_no, max_no) in chain_to_gap.items()
  476. ]
  477. rows = txn.execute_values(sql, args)
  478. result.update(r for r, in rows)
  479. else:
  480. # For SQLite we just fall back to doing a noddy for loop.
  481. sql = """
  482. SELECT event_id FROM event_auth_chains
  483. WHERE chain_id = ? AND ? < sequence_number AND sequence_number <= ?
  484. """
  485. for chain_id, (min_no, max_no) in chain_to_gap.items():
  486. txn.execute(sql, (chain_id, min_no, max_no))
  487. result.update(r for r, in txn)
  488. return result
  489. def _get_auth_chain_difference_txn(
  490. self, txn: LoggingTransaction, state_sets: List[Set[str]]
  491. ) -> Set[str]:
  492. """Calculates the auth chain difference using a breadth first search.
  493. This is used when we don't have a cover index for the room.
  494. """
  495. # Algorithm Description
  496. # ~~~~~~~~~~~~~~~~~~~~~
  497. #
  498. # The idea here is to basically walk the auth graph of each state set in
  499. # tandem, keeping track of which auth events are reachable by each state
  500. # set. If we reach an auth event we've already visited (via a different
  501. # state set) then we mark that auth event and all ancestors as reachable
  502. # by the state set. This requires that we keep track of the auth chains
  503. # in memory.
  504. #
  505. # Doing it in a such a way means that we can stop early if all auth
  506. # events we're currently walking are reachable by all state sets.
  507. #
  508. # *Note*: We can't stop walking an event's auth chain if it is reachable
  509. # by all state sets. This is because other auth chains we're walking
  510. # might be reachable only via the original auth chain. For example,
  511. # given the following auth chain:
  512. #
  513. # A -> C -> D -> E
  514. # / /
  515. # B -´---------´
  516. #
  517. # and state sets {A} and {B} then walking the auth chains of A and B
  518. # would immediately show that C is reachable by both. However, if we
  519. # stopped at C then we'd only reach E via the auth chain of B and so E
  520. # would erroneously get included in the returned difference.
  521. #
  522. # The other thing that we do is limit the number of auth chains we walk
  523. # at once, due to practical limits (i.e. we can only query the database
  524. # with a limited set of parameters). We pick the auth chains we walk
  525. # each iteration based on their depth, in the hope that events with a
  526. # lower depth are likely reachable by those with higher depths.
  527. #
  528. # We could use any ordering that we believe would give a rough
  529. # topological ordering, e.g. origin server timestamp. If the ordering
  530. # chosen is not topological then the algorithm still produces the right
  531. # result, but perhaps a bit more inefficiently. This is why it is safe
  532. # to use "depth" here.
  533. initial_events = set(state_sets[0]).union(*state_sets[1:])
  534. # Dict from events in auth chains to which sets *cannot* reach them.
  535. # I.e. if the set is empty then all sets can reach the event.
  536. event_to_missing_sets = {
  537. event_id: {i for i, a in enumerate(state_sets) if event_id not in a}
  538. for event_id in initial_events
  539. }
  540. # The sorted list of events whose auth chains we should walk.
  541. search: List[Tuple[int, str]] = []
  542. # We need to get the depth of the initial events for sorting purposes.
  543. sql = """
  544. SELECT depth, event_id FROM events
  545. WHERE %s
  546. """
  547. # the list can be huge, so let's avoid looking them all up in one massive
  548. # query.
  549. for batch in batch_iter(initial_events, 1000):
  550. clause, args = make_in_list_sql_clause(
  551. txn.database_engine, "event_id", batch
  552. )
  553. txn.execute(sql % (clause,), args)
  554. # I think building a temporary list with fetchall is more efficient than
  555. # just `search.extend(txn)`, but this is unconfirmed
  556. search.extend(cast(List[Tuple[int, str]], txn.fetchall()))
  557. # sort by depth
  558. search.sort()
  559. # Map from event to its auth events
  560. event_to_auth_events: Dict[str, Set[str]] = {}
  561. base_sql = """
  562. SELECT a.event_id, auth_id, depth
  563. FROM event_auth AS a
  564. INNER JOIN events AS e ON (e.event_id = a.auth_id)
  565. WHERE
  566. """
  567. while search:
  568. # Check whether all our current walks are reachable by all state
  569. # sets. If so we can bail.
  570. if all(not event_to_missing_sets[eid] for _, eid in search):
  571. break
  572. # Fetch the auth events and their depths of the N last events we're
  573. # currently walking, either from cache or DB.
  574. search, chunk = search[:-100], search[-100:]
  575. found: List[Tuple[str, str, int]] = [] # Results found
  576. to_fetch: List[str] = [] # Event IDs to fetch from DB
  577. for _, event_id in chunk:
  578. res = self._event_auth_cache.get(event_id)
  579. if res is None:
  580. to_fetch.append(event_id)
  581. else:
  582. found.extend((event_id, auth_id, depth) for auth_id, depth in res)
  583. if to_fetch:
  584. clause, args = make_in_list_sql_clause(
  585. txn.database_engine, "a.event_id", to_fetch
  586. )
  587. txn.execute(base_sql + clause, args)
  588. # We parse the results and add the to the `found` set and the
  589. # cache (note we need to batch up the results by event ID before
  590. # adding to the cache).
  591. to_cache: Dict[str, List[Tuple[str, int]]] = {}
  592. for event_id, auth_event_id, auth_event_depth in txn:
  593. to_cache.setdefault(event_id, []).append(
  594. (auth_event_id, auth_event_depth)
  595. )
  596. found.append((event_id, auth_event_id, auth_event_depth))
  597. for event_id, auth_events in to_cache.items():
  598. self._event_auth_cache.set(event_id, auth_events)
  599. for event_id, auth_event_id, auth_event_depth in found:
  600. event_to_auth_events.setdefault(event_id, set()).add(auth_event_id)
  601. sets = event_to_missing_sets.get(auth_event_id)
  602. if sets is None:
  603. # First time we're seeing this event, so we add it to the
  604. # queue of things to fetch.
  605. search.append((auth_event_depth, auth_event_id))
  606. # Assume that this event is unreachable from any of the
  607. # state sets until proven otherwise
  608. sets = event_to_missing_sets[auth_event_id] = set(
  609. range(len(state_sets))
  610. )
  611. else:
  612. # We've previously seen this event, so look up its auth
  613. # events and recursively mark all ancestors as reachable
  614. # by the current event's state set.
  615. a_ids = event_to_auth_events.get(auth_event_id)
  616. while a_ids:
  617. new_aids = set()
  618. for a_id in a_ids:
  619. event_to_missing_sets[a_id].intersection_update(
  620. event_to_missing_sets[event_id]
  621. )
  622. b = event_to_auth_events.get(a_id)
  623. if b:
  624. new_aids.update(b)
  625. a_ids = new_aids
  626. # Mark that the auth event is reachable by the appropriate sets.
  627. sets.intersection_update(event_to_missing_sets[event_id])
  628. search.sort()
  629. # Return all events where not all sets can reach them.
  630. return {eid for eid, n in event_to_missing_sets.items() if n}
  631. @trace
  632. @tag_args
  633. async def get_backfill_points_in_room(
  634. self,
  635. room_id: str,
  636. current_depth: int,
  637. limit: int,
  638. ) -> List[Tuple[str, int]]:
  639. """
  640. Get the backward extremities to backfill from in the room along with the
  641. approximate depth.
  642. Only returns events that are at a depth lower than or
  643. equal to the `current_depth`. Sorted by depth, highest to lowest (descending)
  644. so the closest events to the `current_depth` are first in the list.
  645. We ignore extremities that are newer than the user's current scroll position
  646. (ie, those with depth greater than `current_depth`) as:
  647. 1. we don't really care about getting events that have happened
  648. after our current position; and
  649. 2. by the nature of paginating and scrolling back, we have likely
  650. previously tried and failed to backfill from that extremity, so
  651. to avoid getting "stuck" requesting the same backfill repeatedly
  652. we drop those extremities.
  653. Args:
  654. room_id: Room where we want to find the oldest events
  655. current_depth: The depth at the user's current scrollback position
  656. limit: The max number of backfill points to return
  657. Returns:
  658. List of (event_id, depth) tuples. Sorted by depth, highest to lowest
  659. (descending) so the closest events to the `current_depth` are first
  660. in the list.
  661. """
  662. def get_backfill_points_in_room_txn(
  663. txn: LoggingTransaction, room_id: str
  664. ) -> List[Tuple[str, int]]:
  665. # Assemble a tuple lookup of event_id -> depth for the oldest events
  666. # we know of in the room. Backwards extremeties are the oldest
  667. # events we know of in the room but we only know of them because
  668. # some other event referenced them by prev_event and aren't
  669. # persisted in our database yet (meaning we don't know their depth
  670. # specifically). So we need to look for the approximate depth from
  671. # the events connected to the current backwards extremeties.
  672. if isinstance(self.database_engine, PostgresEngine):
  673. least_function = "LEAST"
  674. elif isinstance(self.database_engine, Sqlite3Engine):
  675. least_function = "MIN"
  676. else:
  677. raise RuntimeError("Unknown database engine")
  678. sql = f"""
  679. SELECT backward_extrem.event_id, event.depth FROM events AS event
  680. /**
  681. * Get the edge connections from the event_edges table
  682. * so we can see whether this event's prev_events points
  683. * to a backward extremity in the next join.
  684. */
  685. INNER JOIN event_edges AS edge
  686. ON edge.event_id = event.event_id
  687. /**
  688. * We find the "oldest" events in the room by looking for
  689. * events connected to backwards extremeties (oldest events
  690. * in the room that we know of so far).
  691. */
  692. INNER JOIN event_backward_extremities AS backward_extrem
  693. ON edge.prev_event_id = backward_extrem.event_id
  694. /**
  695. * We use this info to make sure we don't retry to use a backfill point
  696. * if we've already attempted to backfill from it recently.
  697. */
  698. LEFT JOIN event_failed_pull_attempts AS failed_backfill_attempt_info
  699. ON
  700. failed_backfill_attempt_info.room_id = backward_extrem.room_id
  701. AND failed_backfill_attempt_info.event_id = backward_extrem.event_id
  702. WHERE
  703. backward_extrem.room_id = ?
  704. /* We only care about non-state edges because we used to use
  705. * `event_edges` for two different sorts of "edges" (the current
  706. * event DAG, but also a link to the previous state, for state
  707. * events). These legacy state event edges can be distinguished by
  708. * `is_state` and are removed from the codebase and schema but
  709. * because the schema change is in a background update, it's not
  710. * necessarily safe to assume that it will have been completed.
  711. */
  712. AND edge.is_state is ? /* False */
  713. /**
  714. * We only want backwards extremities that are older than or at
  715. * the same position of the given `current_depth` (where older
  716. * means less than the given depth) because we're looking backwards
  717. * from the `current_depth` when backfilling.
  718. *
  719. * current_depth (ignore events that come after this, ignore 2-4)
  720. * |
  721. * ▼
  722. * <oldest-in-time> [0]<--[1]<--[2]<--[3]<--[4] <newest-in-time>
  723. */
  724. AND event.depth <= ? /* current_depth */
  725. /**
  726. * Exponential back-off (up to the upper bound) so we don't retry the
  727. * same backfill point over and over. ex. 2hr, 4hr, 8hr, 16hr, etc.
  728. *
  729. * We use `1 << n` as a power of 2 equivalent for compatibility
  730. * with older SQLites. The left shift equivalent only works with
  731. * powers of 2 because left shift is a binary operation (base-2).
  732. * Otherwise, we would use `power(2, n)` or the power operator, `2^n`.
  733. */
  734. AND (
  735. failed_backfill_attempt_info.event_id IS NULL
  736. OR ? /* current_time */ >= failed_backfill_attempt_info.last_attempt_ts + (
  737. (1 << {least_function}(failed_backfill_attempt_info.num_attempts, ? /* max doubling steps */))
  738. * ? /* step */
  739. )
  740. )
  741. /**
  742. * Sort from highest (closest to the `current_depth`) to the lowest depth
  743. * because the closest are most relevant to backfill from first.
  744. * Then tie-break on alphabetical order of the event_ids so we get a
  745. * consistent ordering which is nice when asserting things in tests.
  746. */
  747. ORDER BY event.depth DESC, backward_extrem.event_id DESC
  748. LIMIT ?
  749. """
  750. txn.execute(
  751. sql,
  752. (
  753. room_id,
  754. False,
  755. current_depth,
  756. self._clock.time_msec(),
  757. BACKFILL_EVENT_EXPONENTIAL_BACKOFF_MAXIMUM_DOUBLING_STEPS,
  758. BACKFILL_EVENT_EXPONENTIAL_BACKOFF_STEP_MILLISECONDS,
  759. limit,
  760. ),
  761. )
  762. return cast(List[Tuple[str, int]], txn.fetchall())
  763. return await self.db_pool.runInteraction(
  764. "get_backfill_points_in_room",
  765. get_backfill_points_in_room_txn,
  766. room_id,
  767. )
  768. @trace
  769. async def get_insertion_event_backward_extremities_in_room(
  770. self,
  771. room_id: str,
  772. current_depth: int,
  773. limit: int,
  774. ) -> List[Tuple[str, int]]:
  775. """
  776. Get the insertion events we know about that we haven't backfilled yet
  777. along with the approximate depth. Only returns insertion events that are
  778. at a depth lower than or equal to the `current_depth`. Sorted by depth,
  779. highest to lowest (descending) so the closest events to the
  780. `current_depth` are first in the list.
  781. We ignore insertion events that are newer than the user's current scroll
  782. position (ie, those with depth greater than `current_depth`) as:
  783. 1. we don't really care about getting events that have happened
  784. after our current position; and
  785. 2. by the nature of paginating and scrolling back, we have likely
  786. previously tried and failed to backfill from that insertion event, so
  787. to avoid getting "stuck" requesting the same backfill repeatedly
  788. we drop those insertion event.
  789. Args:
  790. room_id: Room where we want to find the oldest events
  791. current_depth: The depth at the user's current scrollback position
  792. limit: The max number of insertion event extremities to return
  793. Returns:
  794. List of (event_id, depth) tuples. Sorted by depth, highest to lowest
  795. (descending) so the closest events to the `current_depth` are first
  796. in the list.
  797. """
  798. def get_insertion_event_backward_extremities_in_room_txn(
  799. txn: LoggingTransaction, room_id: str
  800. ) -> List[Tuple[str, int]]:
  801. if isinstance(self.database_engine, PostgresEngine):
  802. least_function = "LEAST"
  803. elif isinstance(self.database_engine, Sqlite3Engine):
  804. least_function = "MIN"
  805. else:
  806. raise RuntimeError("Unknown database engine")
  807. sql = f"""
  808. SELECT
  809. insertion_event_extremity.event_id, event.depth
  810. /* We only want insertion events that are also marked as backwards extremities */
  811. FROM insertion_event_extremities AS insertion_event_extremity
  812. /* Get the depth of the insertion event from the events table */
  813. INNER JOIN events AS event USING (event_id)
  814. /**
  815. * We use this info to make sure we don't retry to use a backfill point
  816. * if we've already attempted to backfill from it recently.
  817. */
  818. LEFT JOIN event_failed_pull_attempts AS failed_backfill_attempt_info
  819. ON
  820. failed_backfill_attempt_info.room_id = insertion_event_extremity.room_id
  821. AND failed_backfill_attempt_info.event_id = insertion_event_extremity.event_id
  822. WHERE
  823. insertion_event_extremity.room_id = ?
  824. /**
  825. * We only want extremities that are older than or at
  826. * the same position of the given `current_depth` (where older
  827. * means less than the given depth) because we're looking backwards
  828. * from the `current_depth` when backfilling.
  829. *
  830. * current_depth (ignore events that come after this, ignore 2-4)
  831. * |
  832. * ▼
  833. * <oldest-in-time> [0]<--[1]<--[2]<--[3]<--[4] <newest-in-time>
  834. */
  835. AND event.depth <= ? /* current_depth */
  836. /**
  837. * Exponential back-off (up to the upper bound) so we don't retry the
  838. * same backfill point over and over. ex. 2hr, 4hr, 8hr, 16hr, etc
  839. *
  840. * We use `1 << n` as a power of 2 equivalent for compatibility
  841. * with older SQLites. The left shift equivalent only works with
  842. * powers of 2 because left shift is a binary operation (base-2).
  843. * Otherwise, we would use `power(2, n)` or the power operator, `2^n`.
  844. */
  845. AND (
  846. failed_backfill_attempt_info.event_id IS NULL
  847. OR ? /* current_time */ >= failed_backfill_attempt_info.last_attempt_ts + (
  848. (1 << {least_function}(failed_backfill_attempt_info.num_attempts, ? /* max doubling steps */))
  849. * ? /* step */
  850. )
  851. )
  852. /**
  853. * Sort from highest (closest to the `current_depth`) to the lowest depth
  854. * because the closest are most relevant to backfill from first.
  855. * Then tie-break on alphabetical order of the event_ids so we get a
  856. * consistent ordering which is nice when asserting things in tests.
  857. */
  858. ORDER BY event.depth DESC, insertion_event_extremity.event_id DESC
  859. LIMIT ?
  860. """
  861. txn.execute(
  862. sql,
  863. (
  864. room_id,
  865. current_depth,
  866. self._clock.time_msec(),
  867. BACKFILL_EVENT_EXPONENTIAL_BACKOFF_MAXIMUM_DOUBLING_STEPS,
  868. BACKFILL_EVENT_EXPONENTIAL_BACKOFF_STEP_MILLISECONDS,
  869. limit,
  870. ),
  871. )
  872. return cast(List[Tuple[str, int]], txn.fetchall())
  873. return await self.db_pool.runInteraction(
  874. "get_insertion_event_backward_extremities_in_room",
  875. get_insertion_event_backward_extremities_in_room_txn,
  876. room_id,
  877. )
  878. async def get_max_depth_of(
  879. self, event_ids: Collection[str]
  880. ) -> Tuple[Optional[str], int]:
  881. """Returns the event ID and depth for the event that has the max depth from a set of event IDs
  882. Args:
  883. event_ids: The event IDs to calculate the max depth of.
  884. """
  885. rows = await self.db_pool.simple_select_many_batch(
  886. table="events",
  887. column="event_id",
  888. iterable=event_ids,
  889. retcols=(
  890. "event_id",
  891. "depth",
  892. ),
  893. desc="get_max_depth_of",
  894. )
  895. if not rows:
  896. return None, 0
  897. else:
  898. max_depth_event_id = ""
  899. current_max_depth = 0
  900. for row in rows:
  901. if row["depth"] > current_max_depth:
  902. max_depth_event_id = row["event_id"]
  903. current_max_depth = row["depth"]
  904. return max_depth_event_id, current_max_depth
  905. async def get_min_depth_of(self, event_ids: List[str]) -> Tuple[Optional[str], int]:
  906. """Returns the event ID and depth for the event that has the min depth from a set of event IDs
  907. Args:
  908. event_ids: The event IDs to calculate the max depth of.
  909. """
  910. rows = await self.db_pool.simple_select_many_batch(
  911. table="events",
  912. column="event_id",
  913. iterable=event_ids,
  914. retcols=(
  915. "event_id",
  916. "depth",
  917. ),
  918. desc="get_min_depth_of",
  919. )
  920. if not rows:
  921. return None, 0
  922. else:
  923. min_depth_event_id = ""
  924. current_min_depth = MAX_DEPTH
  925. for row in rows:
  926. if row["depth"] < current_min_depth:
  927. min_depth_event_id = row["event_id"]
  928. current_min_depth = row["depth"]
  929. return min_depth_event_id, current_min_depth
  930. async def get_prev_events_for_room(self, room_id: str) -> List[str]:
  931. """
  932. Gets a subset of the current forward extremities in the given room.
  933. Limits the result to 10 extremities, so that we can avoid creating
  934. events which refer to hundreds of prev_events.
  935. Args:
  936. room_id: room_id
  937. Returns:
  938. The event ids of the forward extremities.
  939. """
  940. return await self.db_pool.runInteraction(
  941. "get_prev_events_for_room", self._get_prev_events_for_room_txn, room_id
  942. )
  943. def _get_prev_events_for_room_txn(
  944. self, txn: LoggingTransaction, room_id: str
  945. ) -> List[str]:
  946. # we just use the 10 newest events. Older events will become
  947. # prev_events of future events.
  948. sql = """
  949. SELECT e.event_id FROM event_forward_extremities AS f
  950. INNER JOIN events AS e USING (event_id)
  951. WHERE f.room_id = ?
  952. ORDER BY e.depth DESC
  953. LIMIT 10
  954. """
  955. txn.execute(sql, (room_id,))
  956. return [row[0] for row in txn]
  957. async def get_rooms_with_many_extremities(
  958. self, min_count: int, limit: int, room_id_filter: Iterable[str]
  959. ) -> List[str]:
  960. """Get the top rooms with at least N extremities.
  961. Args:
  962. min_count: The minimum number of extremities
  963. limit: The maximum number of rooms to return.
  964. room_id_filter: room_ids to exclude from the results
  965. Returns:
  966. At most `limit` room IDs that have at least `min_count` extremities,
  967. sorted by extremity count.
  968. """
  969. def _get_rooms_with_many_extremities_txn(txn: LoggingTransaction) -> List[str]:
  970. where_clause = "1=1"
  971. if room_id_filter:
  972. where_clause = "room_id NOT IN (%s)" % (
  973. ",".join("?" for _ in room_id_filter),
  974. )
  975. sql = """
  976. SELECT room_id FROM event_forward_extremities
  977. WHERE %s
  978. GROUP BY room_id
  979. HAVING count(*) > ?
  980. ORDER BY count(*) DESC
  981. LIMIT ?
  982. """ % (
  983. where_clause,
  984. )
  985. query_args = list(itertools.chain(room_id_filter, [min_count, limit]))
  986. txn.execute(sql, query_args)
  987. return [room_id for room_id, in txn]
  988. return await self.db_pool.runInteraction(
  989. "get_rooms_with_many_extremities", _get_rooms_with_many_extremities_txn
  990. )
  991. @cached(max_entries=5000, iterable=True)
  992. async def get_latest_event_ids_in_room(self, room_id: str) -> Sequence[str]:
  993. return await self.db_pool.simple_select_onecol(
  994. table="event_forward_extremities",
  995. keyvalues={"room_id": room_id},
  996. retcol="event_id",
  997. desc="get_latest_event_ids_in_room",
  998. )
  999. async def get_min_depth(self, room_id: str) -> Optional[int]:
  1000. """For the given room, get the minimum depth we have seen for it."""
  1001. return await self.db_pool.runInteraction(
  1002. "get_min_depth", self._get_min_depth_interaction, room_id
  1003. )
  1004. def _get_min_depth_interaction(
  1005. self, txn: LoggingTransaction, room_id: str
  1006. ) -> Optional[int]:
  1007. min_depth = self.db_pool.simple_select_one_onecol_txn(
  1008. txn,
  1009. table="room_depth",
  1010. keyvalues={"room_id": room_id},
  1011. retcol="min_depth",
  1012. allow_none=True,
  1013. )
  1014. return int(min_depth) if min_depth is not None else None
  1015. @cancellable
  1016. async def get_forward_extremities_for_room_at_stream_ordering(
  1017. self, room_id: str, stream_ordering: int
  1018. ) -> Sequence[str]:
  1019. """For a given room_id and stream_ordering, return the forward
  1020. extremeties of the room at that point in "time".
  1021. Throws a StoreError if we have since purged the index for
  1022. stream_orderings from that point.
  1023. Args:
  1024. room_id:
  1025. stream_ordering:
  1026. Returns:
  1027. A list of event_ids
  1028. """
  1029. # We want to make the cache more effective, so we clamp to the last
  1030. # change before the given ordering.
  1031. last_change = self._events_stream_cache.get_max_pos_of_last_change(room_id) # type: ignore[attr-defined]
  1032. # We don't always have a full stream_to_exterm_id table, e.g. after
  1033. # the upgrade that introduced it, so we make sure we never ask for a
  1034. # stream_ordering from before a restart
  1035. last_change = max(self._stream_order_on_start, last_change) # type: ignore[attr-defined]
  1036. # provided the last_change is recent enough, we now clamp the requested
  1037. # stream_ordering to it.
  1038. if last_change > self.stream_ordering_month_ago: # type: ignore[attr-defined]
  1039. stream_ordering = min(last_change, stream_ordering)
  1040. return await self._get_forward_extremeties_for_room(room_id, stream_ordering)
  1041. @cached(max_entries=5000, num_args=2)
  1042. async def _get_forward_extremeties_for_room(
  1043. self, room_id: str, stream_ordering: int
  1044. ) -> Sequence[str]:
  1045. """For a given room_id and stream_ordering, return the forward
  1046. extremeties of the room at that point in "time".
  1047. Throws a StoreError if we have since purged the index for
  1048. stream_orderings from that point.
  1049. """
  1050. if stream_ordering <= self.stream_ordering_month_ago: # type: ignore[attr-defined]
  1051. raise StoreError(400, "stream_ordering too old %s" % (stream_ordering,))
  1052. sql = """
  1053. SELECT event_id FROM stream_ordering_to_exterm
  1054. INNER JOIN (
  1055. SELECT room_id, MAX(stream_ordering) AS stream_ordering
  1056. FROM stream_ordering_to_exterm
  1057. WHERE stream_ordering <= ? GROUP BY room_id
  1058. ) AS rms USING (room_id, stream_ordering)
  1059. WHERE room_id = ?
  1060. """
  1061. def get_forward_extremeties_for_room_txn(txn: LoggingTransaction) -> List[str]:
  1062. txn.execute(sql, (stream_ordering, room_id))
  1063. return [event_id for event_id, in txn]
  1064. return await self.db_pool.runInteraction(
  1065. "get_forward_extremeties_for_room", get_forward_extremeties_for_room_txn
  1066. )
  1067. def _get_connected_batch_event_backfill_results_txn(
  1068. self, txn: LoggingTransaction, insertion_event_id: str, limit: int
  1069. ) -> List[BackfillQueueNavigationItem]:
  1070. """
  1071. Find any batch connections of a given insertion event.
  1072. A batch event points at a insertion event via:
  1073. batch_event.content[MSC2716_BATCH_ID] -> insertion_event.content[MSC2716_NEXT_BATCH_ID]
  1074. Args:
  1075. txn: The database transaction to use
  1076. insertion_event_id: The event ID to navigate from. We will find
  1077. batch events that point back at this insertion event.
  1078. limit: Max number of event ID's to query for and return
  1079. Returns:
  1080. List of batch events that the backfill queue can process
  1081. """
  1082. batch_connection_query = """
  1083. SELECT e.depth, e.stream_ordering, c.event_id, e.type FROM insertion_events AS i
  1084. /* Find the batch that connects to the given insertion event */
  1085. INNER JOIN batch_events AS c
  1086. ON i.next_batch_id = c.batch_id
  1087. /* Get the depth of the batch start event from the events table */
  1088. INNER JOIN events AS e ON c.event_id = e.event_id
  1089. /* Find an insertion event which matches the given event_id */
  1090. WHERE i.event_id = ?
  1091. LIMIT ?
  1092. """
  1093. # Find any batch connections for the given insertion event
  1094. txn.execute(
  1095. batch_connection_query,
  1096. (insertion_event_id, limit),
  1097. )
  1098. return [
  1099. BackfillQueueNavigationItem(
  1100. depth=row[0],
  1101. stream_ordering=row[1],
  1102. event_id=row[2],
  1103. type=row[3],
  1104. )
  1105. for row in txn
  1106. ]
  1107. def _get_connected_prev_event_backfill_results_txn(
  1108. self, txn: LoggingTransaction, event_id: str, limit: int
  1109. ) -> List[BackfillQueueNavigationItem]:
  1110. """
  1111. Find any events connected by prev_event the specified event_id.
  1112. Args:
  1113. txn: The database transaction to use
  1114. event_id: The event ID to navigate from
  1115. limit: Max number of event ID's to query for and return
  1116. Returns:
  1117. List of prev events that the backfill queue can process
  1118. """
  1119. # Look for the prev_event_id connected to the given event_id
  1120. connected_prev_event_query = """
  1121. SELECT depth, stream_ordering, prev_event_id, events.type FROM event_edges
  1122. /* Get the depth and stream_ordering of the prev_event_id from the events table */
  1123. INNER JOIN events
  1124. ON prev_event_id = events.event_id
  1125. /* exclude outliers from the results (we don't have the state, so cannot
  1126. * verify if the requesting server can see them).
  1127. */
  1128. WHERE NOT events.outlier
  1129. /* Look for an edge which matches the given event_id */
  1130. AND event_edges.event_id = ? AND NOT event_edges.is_state
  1131. /* Because we can have many events at the same depth,
  1132. * we want to also tie-break and sort on stream_ordering */
  1133. ORDER BY depth DESC, stream_ordering DESC
  1134. LIMIT ?
  1135. """
  1136. txn.execute(
  1137. connected_prev_event_query,
  1138. (event_id, limit),
  1139. )
  1140. return [
  1141. BackfillQueueNavigationItem(
  1142. depth=row[0],
  1143. stream_ordering=row[1],
  1144. event_id=row[2],
  1145. type=row[3],
  1146. )
  1147. for row in txn
  1148. ]
  1149. async def get_backfill_events(
  1150. self, room_id: str, seed_event_id_list: List[str], limit: int
  1151. ) -> List[EventBase]:
  1152. """Get a list of Events for a given topic that occurred before (and
  1153. including) the events in seed_event_id_list. Return a list of max size `limit`
  1154. Args:
  1155. room_id
  1156. seed_event_id_list
  1157. limit
  1158. """
  1159. event_ids = await self.db_pool.runInteraction(
  1160. "get_backfill_events",
  1161. self._get_backfill_events,
  1162. room_id,
  1163. seed_event_id_list,
  1164. limit,
  1165. )
  1166. events = await self.get_events_as_list(event_ids)
  1167. return sorted(
  1168. # type-ignore: mypy doesn't like negating the Optional[int] stream_ordering.
  1169. # But it's never None, because these events were previously persisted to the DB.
  1170. events,
  1171. key=lambda e: (-e.depth, -e.internal_metadata.stream_ordering), # type: ignore[operator]
  1172. )
  1173. def _get_backfill_events(
  1174. self,
  1175. txn: LoggingTransaction,
  1176. room_id: str,
  1177. seed_event_id_list: List[str],
  1178. limit: int,
  1179. ) -> Set[str]:
  1180. """
  1181. We want to make sure that we do a breadth-first, "depth" ordered search.
  1182. We also handle navigating historical branches of history connected by
  1183. insertion and batch events.
  1184. """
  1185. logger.debug(
  1186. "_get_backfill_events(room_id=%s): seeding backfill with seed_event_id_list=%s limit=%s",
  1187. room_id,
  1188. seed_event_id_list,
  1189. limit,
  1190. )
  1191. event_id_results: Set[str] = set()
  1192. # In a PriorityQueue, the lowest valued entries are retrieved first.
  1193. # We're using depth as the priority in the queue and tie-break based on
  1194. # stream_ordering. Depth is lowest at the oldest-in-time message and
  1195. # highest and newest-in-time message. We add events to the queue with a
  1196. # negative depth so that we process the newest-in-time messages first
  1197. # going backwards in time. stream_ordering follows the same pattern.
  1198. queue: "PriorityQueue[Tuple[int, int, str, str]]" = PriorityQueue()
  1199. for seed_event_id in seed_event_id_list:
  1200. event_lookup_result = self.db_pool.simple_select_one_txn(
  1201. txn,
  1202. table="events",
  1203. keyvalues={"event_id": seed_event_id, "room_id": room_id},
  1204. retcols=(
  1205. "type",
  1206. "depth",
  1207. "stream_ordering",
  1208. ),
  1209. allow_none=True,
  1210. )
  1211. if event_lookup_result is not None:
  1212. logger.debug(
  1213. "_get_backfill_events(room_id=%s): seed_event_id=%s depth=%s stream_ordering=%s type=%s",
  1214. room_id,
  1215. seed_event_id,
  1216. event_lookup_result["depth"],
  1217. event_lookup_result["stream_ordering"],
  1218. event_lookup_result["type"],
  1219. )
  1220. if event_lookup_result["depth"]:
  1221. queue.put(
  1222. (
  1223. -event_lookup_result["depth"],
  1224. -event_lookup_result["stream_ordering"],
  1225. seed_event_id,
  1226. event_lookup_result["type"],
  1227. )
  1228. )
  1229. while not queue.empty() and len(event_id_results) < limit:
  1230. try:
  1231. _, _, event_id, event_type = queue.get_nowait()
  1232. except Empty:
  1233. break
  1234. if event_id in event_id_results:
  1235. continue
  1236. event_id_results.add(event_id)
  1237. # Try and find any potential historical batches of message history.
  1238. if self.hs.config.experimental.msc2716_enabled:
  1239. # We need to go and try to find any batch events connected
  1240. # to a given insertion event (by batch_id). If we find any, we'll
  1241. # add them to the queue and navigate up the DAG like normal in the
  1242. # next iteration of the loop.
  1243. if event_type == EventTypes.MSC2716_INSERTION:
  1244. # Find any batch connections for the given insertion event
  1245. connected_batch_event_backfill_results = (
  1246. self._get_connected_batch_event_backfill_results_txn(
  1247. txn, event_id, limit - len(event_id_results)
  1248. )
  1249. )
  1250. logger.debug(
  1251. "_get_backfill_events(room_id=%s): connected_batch_event_backfill_results=%s",
  1252. room_id,
  1253. connected_batch_event_backfill_results,
  1254. )
  1255. for (
  1256. connected_batch_event_backfill_item
  1257. ) in connected_batch_event_backfill_results:
  1258. if (
  1259. connected_batch_event_backfill_item.event_id
  1260. not in event_id_results
  1261. ):
  1262. queue.put(
  1263. (
  1264. -connected_batch_event_backfill_item.depth,
  1265. -connected_batch_event_backfill_item.stream_ordering,
  1266. connected_batch_event_backfill_item.event_id,
  1267. connected_batch_event_backfill_item.type,
  1268. )
  1269. )
  1270. # Now we just look up the DAG by prev_events as normal
  1271. connected_prev_event_backfill_results = (
  1272. self._get_connected_prev_event_backfill_results_txn(
  1273. txn, event_id, limit - len(event_id_results)
  1274. )
  1275. )
  1276. logger.debug(
  1277. "_get_backfill_events(room_id=%s): connected_prev_event_backfill_results=%s",
  1278. room_id,
  1279. connected_prev_event_backfill_results,
  1280. )
  1281. for (
  1282. connected_prev_event_backfill_item
  1283. ) in connected_prev_event_backfill_results:
  1284. if connected_prev_event_backfill_item.event_id not in event_id_results:
  1285. queue.put(
  1286. (
  1287. -connected_prev_event_backfill_item.depth,
  1288. -connected_prev_event_backfill_item.stream_ordering,
  1289. connected_prev_event_backfill_item.event_id,
  1290. connected_prev_event_backfill_item.type,
  1291. )
  1292. )
  1293. return event_id_results
  1294. @trace
  1295. async def record_event_failed_pull_attempt(
  1296. self, room_id: str, event_id: str, cause: str
  1297. ) -> None:
  1298. """
  1299. Record when we fail to pull an event over federation.
  1300. This information allows us to be more intelligent when we decide to
  1301. retry (we don't need to fail over and over) and we can process that
  1302. event in the background so we don't block on it each time.
  1303. Args:
  1304. room_id: The room where the event failed to pull from
  1305. event_id: The event that failed to be fetched or processed
  1306. cause: The error message or reason that we failed to pull the event
  1307. """
  1308. logger.debug(
  1309. "record_event_failed_pull_attempt room_id=%s, event_id=%s, cause=%s",
  1310. room_id,
  1311. event_id,
  1312. cause,
  1313. )
  1314. await self.db_pool.runInteraction(
  1315. "record_event_failed_pull_attempt",
  1316. self._record_event_failed_pull_attempt_upsert_txn,
  1317. room_id,
  1318. event_id,
  1319. cause,
  1320. db_autocommit=True, # Safe as it's a single upsert
  1321. )
  1322. def _record_event_failed_pull_attempt_upsert_txn(
  1323. self,
  1324. txn: LoggingTransaction,
  1325. room_id: str,
  1326. event_id: str,
  1327. cause: str,
  1328. ) -> None:
  1329. sql = """
  1330. INSERT INTO event_failed_pull_attempts (
  1331. room_id, event_id, num_attempts, last_attempt_ts, last_cause
  1332. )
  1333. VALUES (?, ?, ?, ?, ?)
  1334. ON CONFLICT (room_id, event_id) DO UPDATE SET
  1335. num_attempts=event_failed_pull_attempts.num_attempts + 1,
  1336. last_attempt_ts=EXCLUDED.last_attempt_ts,
  1337. last_cause=EXCLUDED.last_cause;
  1338. """
  1339. txn.execute(sql, (room_id, event_id, 1, self._clock.time_msec(), cause))
  1340. @trace
  1341. async def get_event_ids_to_not_pull_from_backoff(
  1342. self,
  1343. room_id: str,
  1344. event_ids: Collection[str],
  1345. ) -> List[str]:
  1346. """
  1347. Filter down the events to ones that we've failed to pull before recently. Uses
  1348. exponential backoff.
  1349. Args:
  1350. room_id: The room that the events belong to
  1351. event_ids: A list of events to filter down
  1352. Returns:
  1353. List of event_ids that should not be attempted to be pulled
  1354. """
  1355. event_failed_pull_attempts = await self.db_pool.simple_select_many_batch(
  1356. table="event_failed_pull_attempts",
  1357. column="event_id",
  1358. iterable=event_ids,
  1359. keyvalues={},
  1360. retcols=(
  1361. "event_id",
  1362. "last_attempt_ts",
  1363. "num_attempts",
  1364. ),
  1365. desc="get_event_ids_to_not_pull_from_backoff",
  1366. )
  1367. current_time = self._clock.time_msec()
  1368. return [
  1369. event_failed_pull_attempt["event_id"]
  1370. for event_failed_pull_attempt in event_failed_pull_attempts
  1371. # Exponential back-off (up to the upper bound) so we don't try to
  1372. # pull the same event over and over. ex. 2hr, 4hr, 8hr, 16hr, etc.
  1373. if current_time
  1374. < event_failed_pull_attempt["last_attempt_ts"]
  1375. + (
  1376. 2
  1377. ** min(
  1378. event_failed_pull_attempt["num_attempts"],
  1379. BACKFILL_EVENT_EXPONENTIAL_BACKOFF_MAXIMUM_DOUBLING_STEPS,
  1380. )
  1381. )
  1382. * BACKFILL_EVENT_EXPONENTIAL_BACKOFF_STEP_MILLISECONDS
  1383. ]
  1384. async def get_missing_events(
  1385. self,
  1386. room_id: str,
  1387. earliest_events: List[str],
  1388. latest_events: List[str],
  1389. limit: int,
  1390. ) -> List[EventBase]:
  1391. ids = await self.db_pool.runInteraction(
  1392. "get_missing_events",
  1393. self._get_missing_events,
  1394. room_id,
  1395. earliest_events,
  1396. latest_events,
  1397. limit,
  1398. )
  1399. return await self.get_events_as_list(ids)
  1400. def _get_missing_events(
  1401. self,
  1402. txn: LoggingTransaction,
  1403. room_id: str,
  1404. earliest_events: List[str],
  1405. latest_events: List[str],
  1406. limit: int,
  1407. ) -> List[str]:
  1408. seen_events = set(earliest_events)
  1409. front = set(latest_events) - seen_events
  1410. event_results: List[str] = []
  1411. query = (
  1412. "SELECT prev_event_id FROM event_edges "
  1413. "WHERE event_id = ? AND NOT is_state "
  1414. "LIMIT ?"
  1415. )
  1416. while front and len(event_results) < limit:
  1417. new_front = set()
  1418. for event_id in front:
  1419. txn.execute(query, (event_id, limit - len(event_results)))
  1420. new_results = {t[0] for t in txn} - seen_events
  1421. new_front |= new_results
  1422. seen_events |= new_results
  1423. event_results.extend(new_results)
  1424. front = new_front
  1425. # we built the list working backwards from latest_events; we now need to
  1426. # reverse it so that the events are approximately chronological.
  1427. event_results.reverse()
  1428. return event_results
  1429. @trace
  1430. @tag_args
  1431. async def get_successor_events(self, event_id: str) -> List[str]:
  1432. """Fetch all events that have the given event as a prev event
  1433. Args:
  1434. event_id: The event to search for as a prev_event.
  1435. """
  1436. return await self.db_pool.simple_select_onecol(
  1437. table="event_edges",
  1438. keyvalues={"prev_event_id": event_id},
  1439. retcol="event_id",
  1440. desc="get_successor_events",
  1441. )
  1442. @wrap_as_background_process("delete_old_forward_extrem_cache")
  1443. async def _delete_old_forward_extrem_cache(self) -> None:
  1444. def _delete_old_forward_extrem_cache_txn(txn: LoggingTransaction) -> None:
  1445. # Delete entries older than a month, while making sure we don't delete
  1446. # the only entries for a room.
  1447. sql = """
  1448. DELETE FROM stream_ordering_to_exterm
  1449. WHERE
  1450. room_id IN (
  1451. SELECT room_id
  1452. FROM stream_ordering_to_exterm
  1453. WHERE stream_ordering > ?
  1454. ) AND stream_ordering < ?
  1455. """
  1456. txn.execute(
  1457. sql, (self.stream_ordering_month_ago, self.stream_ordering_month_ago) # type: ignore[attr-defined]
  1458. )
  1459. await self.db_pool.runInteraction(
  1460. "_delete_old_forward_extrem_cache",
  1461. _delete_old_forward_extrem_cache_txn,
  1462. )
  1463. @trace
  1464. async def insert_insertion_extremity(self, event_id: str, room_id: str) -> None:
  1465. await self.db_pool.simple_upsert(
  1466. table="insertion_event_extremities",
  1467. keyvalues={"event_id": event_id},
  1468. values={
  1469. "event_id": event_id,
  1470. "room_id": room_id,
  1471. },
  1472. insertion_values={},
  1473. desc="insert_insertion_extremity",
  1474. )
  1475. async def insert_received_event_to_staging(
  1476. self, origin: str, event: EventBase
  1477. ) -> None:
  1478. """Insert a newly received event from federation into the staging area."""
  1479. # We use an upsert here to handle the case where we see the same event
  1480. # from the same server multiple times.
  1481. await self.db_pool.simple_upsert(
  1482. table="federation_inbound_events_staging",
  1483. keyvalues={
  1484. "origin": origin,
  1485. "event_id": event.event_id,
  1486. },
  1487. values={},
  1488. insertion_values={
  1489. "room_id": event.room_id,
  1490. "received_ts": self._clock.time_msec(),
  1491. "event_json": json_encoder.encode(event.get_dict()),
  1492. "internal_metadata": json_encoder.encode(
  1493. event.internal_metadata.get_dict()
  1494. ),
  1495. },
  1496. desc="insert_received_event_to_staging",
  1497. )
  1498. async def remove_received_event_from_staging(
  1499. self,
  1500. origin: str,
  1501. event_id: str,
  1502. ) -> Optional[int]:
  1503. """Remove the given event from the staging area.
  1504. Returns:
  1505. The received_ts of the row that was deleted, if any.
  1506. """
  1507. if self.db_pool.engine.supports_returning:
  1508. def _remove_received_event_from_staging_txn(
  1509. txn: LoggingTransaction,
  1510. ) -> Optional[int]:
  1511. sql = """
  1512. DELETE FROM federation_inbound_events_staging
  1513. WHERE origin = ? AND event_id = ?
  1514. RETURNING received_ts
  1515. """
  1516. txn.execute(sql, (origin, event_id))
  1517. row = cast(Optional[Tuple[int]], txn.fetchone())
  1518. if row is None:
  1519. return None
  1520. return row[0]
  1521. return await self.db_pool.runInteraction(
  1522. "remove_received_event_from_staging",
  1523. _remove_received_event_from_staging_txn,
  1524. db_autocommit=True,
  1525. )
  1526. else:
  1527. def _remove_received_event_from_staging_txn(
  1528. txn: LoggingTransaction,
  1529. ) -> Optional[int]:
  1530. received_ts = self.db_pool.simple_select_one_onecol_txn(
  1531. txn,
  1532. table="federation_inbound_events_staging",
  1533. keyvalues={
  1534. "origin": origin,
  1535. "event_id": event_id,
  1536. },
  1537. retcol="received_ts",
  1538. allow_none=True,
  1539. )
  1540. self.db_pool.simple_delete_txn(
  1541. txn,
  1542. table="federation_inbound_events_staging",
  1543. keyvalues={
  1544. "origin": origin,
  1545. "event_id": event_id,
  1546. },
  1547. )
  1548. return received_ts
  1549. return await self.db_pool.runInteraction(
  1550. "remove_received_event_from_staging",
  1551. _remove_received_event_from_staging_txn,
  1552. )
  1553. async def get_next_staged_event_id_for_room(
  1554. self,
  1555. room_id: str,
  1556. ) -> Optional[Tuple[str, str]]:
  1557. """
  1558. Get the next event ID in the staging area for the given room.
  1559. Returns:
  1560. Tuple of the `origin` and `event_id`
  1561. """
  1562. def _get_next_staged_event_id_for_room_txn(
  1563. txn: LoggingTransaction,
  1564. ) -> Optional[Tuple[str, str]]:
  1565. sql = """
  1566. SELECT origin, event_id
  1567. FROM federation_inbound_events_staging
  1568. WHERE room_id = ?
  1569. ORDER BY received_ts ASC
  1570. LIMIT 1
  1571. """
  1572. txn.execute(sql, (room_id,))
  1573. return cast(Optional[Tuple[str, str]], txn.fetchone())
  1574. return await self.db_pool.runInteraction(
  1575. "get_next_staged_event_id_for_room", _get_next_staged_event_id_for_room_txn
  1576. )
  1577. async def get_next_staged_event_for_room(
  1578. self,
  1579. room_id: str,
  1580. room_version: RoomVersion,
  1581. ) -> Optional[Tuple[str, EventBase]]:
  1582. """Get the next event in the staging area for the given room."""
  1583. def _get_next_staged_event_for_room_txn(
  1584. txn: LoggingTransaction,
  1585. ) -> Optional[Tuple[str, str, str]]:
  1586. sql = """
  1587. SELECT event_json, internal_metadata, origin
  1588. FROM federation_inbound_events_staging
  1589. WHERE room_id = ?
  1590. ORDER BY received_ts ASC
  1591. LIMIT 1
  1592. """
  1593. txn.execute(sql, (room_id,))
  1594. return cast(Optional[Tuple[str, str, str]], txn.fetchone())
  1595. row = await self.db_pool.runInteraction(
  1596. "get_next_staged_event_for_room", _get_next_staged_event_for_room_txn
  1597. )
  1598. if not row:
  1599. return None
  1600. event_d = db_to_json(row[0])
  1601. internal_metadata_d = db_to_json(row[1])
  1602. origin = row[2]
  1603. event = make_event_from_dict(
  1604. event_dict=event_d,
  1605. room_version=room_version,
  1606. internal_metadata_dict=internal_metadata_d,
  1607. )
  1608. return origin, event
  1609. async def prune_staged_events_in_room(
  1610. self,
  1611. room_id: str,
  1612. room_version: RoomVersion,
  1613. ) -> bool:
  1614. """Checks if there are lots of staged events for the room, and if so
  1615. prune them down.
  1616. Returns:
  1617. Whether any events were pruned
  1618. """
  1619. # First check the size of the queue.
  1620. count = await self.db_pool.simple_select_one_onecol(
  1621. table="federation_inbound_events_staging",
  1622. keyvalues={"room_id": room_id},
  1623. retcol="COUNT(*)",
  1624. desc="prune_staged_events_in_room_count",
  1625. )
  1626. if count < 100:
  1627. return False
  1628. # If the queue is too large, then we want clear the entire queue,
  1629. # keeping only the forward extremities (i.e. the events not referenced
  1630. # by other events in the queue). We do this so that we can always
  1631. # backpaginate in all the events we have dropped.
  1632. rows = await self.db_pool.simple_select_list(
  1633. table="federation_inbound_events_staging",
  1634. keyvalues={"room_id": room_id},
  1635. retcols=("event_id", "event_json"),
  1636. desc="prune_staged_events_in_room_fetch",
  1637. )
  1638. # Find the set of events referenced by those in the queue, as well as
  1639. # collecting all the event IDs in the queue.
  1640. referenced_events: Set[str] = set()
  1641. seen_events: Set[str] = set()
  1642. for row in rows:
  1643. event_id = row["event_id"]
  1644. seen_events.add(event_id)
  1645. event_d = db_to_json(row["event_json"])
  1646. # We don't bother parsing the dicts into full blown event objects,
  1647. # as that is needlessly expensive.
  1648. # We haven't checked that the `prev_events` have the right format
  1649. # yet, so we check as we go.
  1650. prev_events = event_d.get("prev_events", [])
  1651. if not isinstance(prev_events, list):
  1652. logger.info("Invalid prev_events for %s", event_id)
  1653. continue
  1654. if room_version.event_format == EventFormatVersions.ROOM_V1_V2:
  1655. for prev_event_tuple in prev_events:
  1656. if (
  1657. not isinstance(prev_event_tuple, list)
  1658. or len(prev_event_tuple) != 2
  1659. ):
  1660. logger.info("Invalid prev_events for %s", event_id)
  1661. break
  1662. prev_event_id = prev_event_tuple[0]
  1663. if not isinstance(prev_event_id, str):
  1664. logger.info("Invalid prev_events for %s", event_id)
  1665. break
  1666. referenced_events.add(prev_event_id)
  1667. else:
  1668. for prev_event_id in prev_events:
  1669. if not isinstance(prev_event_id, str):
  1670. logger.info("Invalid prev_events for %s", event_id)
  1671. break
  1672. referenced_events.add(prev_event_id)
  1673. to_delete = referenced_events & seen_events
  1674. if not to_delete:
  1675. return False
  1676. pdus_pruned_from_federation_queue.inc(len(to_delete))
  1677. logger.info(
  1678. "Pruning %d events in room %s from federation queue",
  1679. len(to_delete),
  1680. room_id,
  1681. )
  1682. await self.db_pool.simple_delete_many(
  1683. table="federation_inbound_events_staging",
  1684. keyvalues={"room_id": room_id},
  1685. iterable=to_delete,
  1686. column="event_id",
  1687. desc="prune_staged_events_in_room_delete",
  1688. )
  1689. return True
  1690. async def get_all_rooms_with_staged_incoming_events(self) -> List[str]:
  1691. """Get the room IDs of all events currently staged."""
  1692. return await self.db_pool.simple_select_onecol(
  1693. table="federation_inbound_events_staging",
  1694. keyvalues={},
  1695. retcol="DISTINCT room_id",
  1696. desc="get_all_rooms_with_staged_incoming_events",
  1697. )
  1698. @wrap_as_background_process("_get_stats_for_federation_staging")
  1699. async def _get_stats_for_federation_staging(self) -> None:
  1700. """Update the prometheus metrics for the inbound federation staging area."""
  1701. def _get_stats_for_federation_staging_txn(
  1702. txn: LoggingTransaction,
  1703. ) -> Tuple[int, int]:
  1704. txn.execute("SELECT count(*) FROM federation_inbound_events_staging")
  1705. (count,) = cast(Tuple[int], txn.fetchone())
  1706. txn.execute(
  1707. "SELECT min(received_ts) FROM federation_inbound_events_staging"
  1708. )
  1709. (received_ts,) = cast(Tuple[Optional[int]], txn.fetchone())
  1710. # If there is nothing in the staging area default it to 0.
  1711. age = 0
  1712. if received_ts is not None:
  1713. age = self._clock.time_msec() - received_ts
  1714. return count, age
  1715. count, age = await self.db_pool.runInteraction(
  1716. "_get_stats_for_federation_staging", _get_stats_for_federation_staging_txn
  1717. )
  1718. number_pdus_in_federation_queue.set(count)
  1719. oldest_pdu_in_federation_staging.set(age)
  1720. class EventFederationStore(EventFederationWorkerStore):
  1721. """Responsible for storing and serving up the various graphs associated
  1722. with an event. Including the main event graph and the auth chains for an
  1723. event.
  1724. Also has methods for getting the front (latest) and back (oldest) edges
  1725. of the event graphs. These are used to generate the parents for new events
  1726. and backfilling from another server respectively.
  1727. """
  1728. EVENT_AUTH_STATE_ONLY = "event_auth_state_only"
  1729. def __init__(
  1730. self,
  1731. database: DatabasePool,
  1732. db_conn: LoggingDatabaseConnection,
  1733. hs: "HomeServer",
  1734. ):
  1735. super().__init__(database, db_conn, hs)
  1736. self.db_pool.updates.register_background_update_handler(
  1737. self.EVENT_AUTH_STATE_ONLY, self._background_delete_non_state_event_auth
  1738. )
  1739. async def clean_room_for_join(self, room_id: str) -> None:
  1740. await self.db_pool.runInteraction(
  1741. "clean_room_for_join", self._clean_room_for_join_txn, room_id
  1742. )
  1743. def _clean_room_for_join_txn(self, txn: LoggingTransaction, room_id: str) -> None:
  1744. query = "DELETE FROM event_forward_extremities WHERE room_id = ?"
  1745. txn.execute(query, (room_id,))
  1746. txn.call_after(self.get_latest_event_ids_in_room.invalidate, (room_id,))
  1747. async def _background_delete_non_state_event_auth(
  1748. self, progress: JsonDict, batch_size: int
  1749. ) -> int:
  1750. def delete_event_auth(txn: LoggingTransaction) -> bool:
  1751. target_min_stream_id = progress.get("target_min_stream_id_inclusive")
  1752. max_stream_id = progress.get("max_stream_id_exclusive")
  1753. if not target_min_stream_id or not max_stream_id:
  1754. txn.execute("SELECT COALESCE(MIN(stream_ordering), 0) FROM events")
  1755. rows = txn.fetchall()
  1756. target_min_stream_id = rows[0][0]
  1757. txn.execute("SELECT COALESCE(MAX(stream_ordering), 0) FROM events")
  1758. rows = txn.fetchall()
  1759. max_stream_id = rows[0][0]
  1760. min_stream_id = max_stream_id - batch_size
  1761. sql = """
  1762. DELETE FROM event_auth
  1763. WHERE event_id IN (
  1764. SELECT event_id FROM events
  1765. LEFT JOIN state_events AS se USING (room_id, event_id)
  1766. WHERE ? <= stream_ordering AND stream_ordering < ?
  1767. AND se.state_key IS null
  1768. )
  1769. """
  1770. txn.execute(sql, (min_stream_id, max_stream_id))
  1771. new_progress = {
  1772. "target_min_stream_id_inclusive": target_min_stream_id,
  1773. "max_stream_id_exclusive": min_stream_id,
  1774. }
  1775. self.db_pool.updates._background_update_progress_txn(
  1776. txn, self.EVENT_AUTH_STATE_ONLY, new_progress
  1777. )
  1778. return min_stream_id >= target_min_stream_id
  1779. result = await self.db_pool.runInteraction(
  1780. self.EVENT_AUTH_STATE_ONLY, delete_event_auth
  1781. )
  1782. if not result:
  1783. await self.db_pool.updates._end_background_update(
  1784. self.EVENT_AUTH_STATE_ONLY
  1785. )
  1786. return batch_size